An Investigation of Recurrent Neural Network Architectures Using Word Embeddings for Phrase Break Prediction
نویسندگان
چکیده
This paper presents our investigations of recurrent neural networks (RNNs) for the phrase break prediction task. With the advent of deep learning, there have been attempts to apply deep neural networks (DNNs) to phrase break prediction. While deep neural networks are able to effectively capture dependencies across features, they lack the ability to capture long-term relations that are spread over time. On the other hand, RNNs are able to capture long-term temporal relations and thus are better suited for tasks where sequences have to be modeled. We model the phrase break prediction task as a sequence labeling task, and show by means of experimental results that RNNs perform better at phrase break prediction as compared to conventional DNN systems.
منابع مشابه
Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملApplication of artificial neural networks on drought prediction in Yazd (Central Iran)
In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...
متن کاملArticulatory movement prediction using deep bidirectional long short-term memory based recurrent neural networks and word/phone embeddings
Automatic prediction of articulatory movements from speech or text can be beneficial for many applications such as speech recognition and synthesis. A recent approach has reported stateof-the-art performance in speech-to-articulatory prediction using feed forward neural networks. In this paper, we investigate the feasibility of using bidirectional long short-term memory based recurrent neural n...
متن کاملLearning continuous-valued word representations for phrase break prediction
Phrase break prediction is the first step in modeling prosody for text-to-speech systems (TTS). Traditional methods of phrase break prediction have used discrete linguistic representations (like POS tags, induced POS tags, word-terminal syllables) for modeling these breaks. However these discrete representations suffer from a number of issues such as fixing the number of discrete classes and al...
متن کاملLearning methods and features for corpus-based phrase break prediction on Thai
This paper presents applications of five famous learning methods for Thai phrase break prediction. Phrase break prediction is particularly important for our Thai text-to-speech synthesizer (TTS), where input Thai text has no word and sentence boundary. The learning methods include a POS sequence model, CART, RIPPER, SLIPPER and neural network. Features proposed for the learning machines can be ...
متن کامل